Usages énergétiques des biomasses

Éléments d'une analyse thermodynamique et systémique

Guillaume Boissonnet (guillaume.boissonnet@cea.fr)

CEA, Direction des Énergies, I-Tésé CEA/Grenoble, 17, avenue des Martyrs, 38054 Grenoble Cedex 9

Le contexte climatique et géopolitique pousse nos sociétés à rechercher comment utiliser au mieux de nouvelles ressources d'énergie, sans contribuer à l'effet de serre. Cependant, « neutre vis-à-vis de l'effet de serre » ne veut pas dire sans carbone. Ainsi, évaluer la neutralité carbone doit se faire sur l'ensemble d'une filière de transformation, et les lois de la thermodynamique s'appliquent à chaque étape.

Dans le mix énergétique actuel, le carbone fossile est majoritaire et dominant.

Et, même dans un système futur, le carbone restera incontournable pour les matériaux, la chimie et l'énergie, tout comme pour l'alimentation. Nous allons voir qu'il s'agit moins de « décarboner » le système que de le « défossiliser ». Le carbone étant alors une ressource critique, il s'agit d'en favoriser les meilleurs usages et de maximiser son rendement de transformation.

Mix énergétique, ressources renouvelables, biomasse

En Europe, la consommation annuelle d'énergie finale est d'environ 1640 Mtep/an, soit 19 073 TWh/an^(a) (données 2018). Le carbone fossile représente 74 % du total, la production d'électricité nucléaire et l'usage des ressources renouvelables contribuant à part égale, 13 % de la consommation chacune, soit 216 Mtep/an (2512 TWh/an). Les usages de la biomasse représentent 65 % des usages renouvelables, essentiellement à des fins de cogénération électricité/chaleur et d'agro-carburants.

En France, en 2019, la consommation d'énergie finale est de 152 Mtep. En raison de l'usage des énergies renouvelables et du nucléaire, l'électricité européenne est décarbonée à environ 50 %, l'électricité française est décarbonée à environ 97 % en émissions directes.

En France comme en Europe, les usages des ressources fossiles carbonées (charbon, gaz, pétrole) sont affectés pour 90 % à la chaleur et au transport. L'effort de défossilisation devrait donc en priorité porter sur ces deux postes. Les besoins en chaleur peuvent être réduits par un effort d'isolation des bâtiments, les besoins à basse température peuvent être pourvus par des moyens de type solaire thermique ou machines thermiques. En revanche, bien qu'électrifiable pour les véhicules légers (pour les courtes ou moyennes distances) et les transports en commun terrestres, la mobilité devrait continuer à dépendre des carburants dans les secteurs où la substitution reste difficile (transports aérien, terrestre à longue distance hors ferroviaire, maritime).

Nous verrons ici comment le carbone biogénique contribue au système énergétique actuel en tant que première énergie renouvelable, et aussi comment il peut contribuer à l'avenir, notamment en lien avec l'énergie électrique. Les rappels de thermodynamique (encadré 1, p. 52) permettront de positionner les contributions respectives des différentes ressources et vecteurs.

Biomasse, énergie : généralités physiques et thermodynamiques

Biomasse(s)? Une définition

Le mot « biomasse » désigne l'ensemble de la matière vivante ou issue du vivant, végétale et animale, présente sur la Terre. Dans le contexte de l'énergie, les directives 2003/30/EC, 009/28/EC et 2018/2001 du Parlement

.

SICET, une centrale biomasse à Ospitale di Cadore, dans les montagnes de la Vénétie en Italie. Cette centrale produit de l'électricité grâce à la vapeur d'eau dégagée par la combustion de matières végétales, qui met en mouvement une turbine reliée à un alternateur.

et du Conseil européen regroupent sous le terme de biomasse « la fraction biodégradable des produits, des déchets et des résidus d'origine biologique provenant de l'agriculture, y compris les substances végétales et animales, de la sylviculture, des industries connexes, y compris la pêche et l'aquaculture, ainsi que la fraction biodégradable des déchets, notamment les déchets industriels et municipaux d'origine biologique ».

La biomasse végétale est ainsi constituée de matière organique, d'eau et de minéraux. Elle pousse dans des milieux très variés et possède un large éventail d'humidité, variant de 20 % à 95 % sur la masse totale pour les biomasses terrestres, et jusqu'à 99 % pour les biomasses aquatiques (l'humidité typique d'un arbre en zone tempérée est d'environ 50 %). Sa production est saisonnière dans les zones tempérées et ses couts de collecte, de stockage et de transport sont élevés, comparés à ceux des ressources fossiles carbonées.

La partie organique peut se résumer à une molécule moyenne de formule brute $C_6H_9O_{4'}$ contenant en masse : 50 % de carbone, 6 % d'hydrogène et 44 % d'oxygène. Le rapport molaire

entre hydrogène et carbone est H/C = 1,5, contre 2 pour la plupart des hydrocarbures et 4 pour le méthane. La biomasse est donc une ressource pauvre en hydrogène, ce qui en fait un mauvais candidat pour la production d'hydrogène gazeux.

La forte proportion massique d'oxygène de la biomasse réduit sa densité énergétique massique, car l'oxygène ne contribue pas au contenu énergétique, au contraire du carbone et de l'hydrogène. Ce pouvoir calorifique modéré, de 18 à 20 MJ/kg (5 à 5,5 kWh/kg), est 2 à 2,5 fois inférieur à celui des hydrocarbures liquides, exempts d'oxygène, compris entre 40 et 45 MJ/kg (11 à 12,5 kWh/kg).

Vu les transformations nécessaires pour produire de l'énergie, les biomasses sont fréquemment classées en fonction de leur taux d'humidité.

1• Les biomasses «humides» contiennent plus de 50 % d'humidité (jusqu'à 90 % dans certains cas). Il s'agit de biomasses sucrières pour les moins humides et d'autres biomasses humides, presque liquides telles que déjections animales, liqueurs noires de papeterie, déchets agroalimentaires

tels que les peaux de fruits. Les algues et microalgues, dont la teneur en eau dépasse généralement 99,9 %, sont également intégrées dans cette catégorie.

2• Les biomasses dites « sèches » ou « ligno-cellulosiques » sont des solides contenant environ 50 % d'humidité, au maximum. Ce sont en particulier les bois, pailles, espèces herbacées et cultures énergétiques.

L'humidité a une conséquence directe sur le mode de transformation des biomasses et sur les produits associés. Ainsi, les biomasses humides sont transformées par des procédés à basse température (inférieure à 100°C à pression atmosphérique). pour éviter de dépenser l'énergie de séchage du produit. Elles sont parfois en compétition pour la production d'énergie ou d'alimentation. La betterave et la canne, qui donnent essentiellement du sucre, sont utilisées à des fins alimentaires ou pour produire de l'éthanol par fermentation. Une plante oléagineuse servira à produire de l'huile, qui pourra ensuite être utilisée pour l'alimentation ou comme carburant. Une biomasse ligno-cellulosique, relativement sèche,

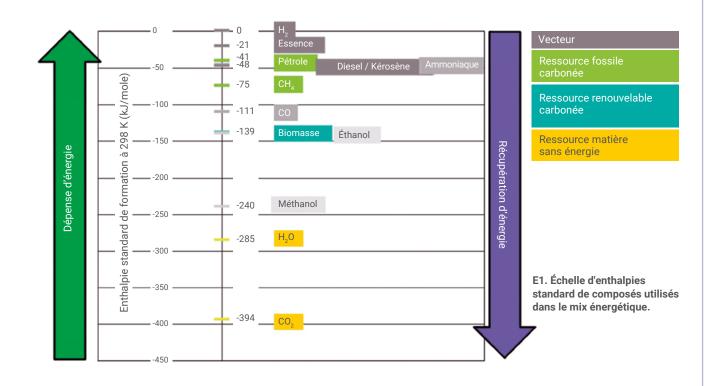
>>>

➡ THERMODYNAMIQUE, POUVOIR CALORIFIQUE, ENTHALPIE STANDARD

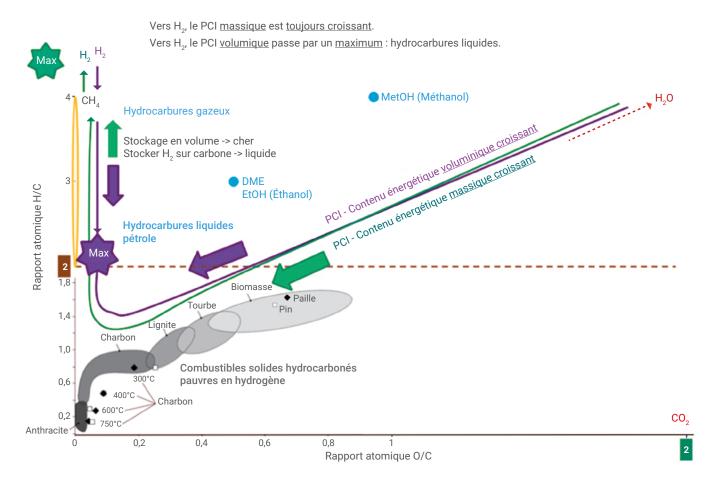
DE FORMATION ET TRANSFORMATIONS D'ÉNERGIE LIÉES AU CARBONE

Le pouvoir calorifique inférieur (PCI) d'un combustible est égal à la quantité de chaleur dégagée par la combustion complète d'une unité de masse de ce combustible dans l'air sous une pression de 1,01325 10⁵ Pa et à la température constante de 0°C [i], l'eau formée pendant la combustion restant à l'état gazeux.

La biomasse étant une famille de combustibles de compositions et de contenus énergétiques variables, il est souvent long et fastidieux de mesurer le PCI dans chaque cas particulier. C'est la raison pour laquelle une valeur moyenne du PCI de la partie organique d'une biomasse, proche de 18 MJ/kg, est généralement considérée.


Le pouvoir calorifique d'un composé chimique est directement lié à son enthalpie standard de formation, qui est celle mise en jeu lors de la formation d'une mole de ce composé à partir des corps simples, purs, pris dans l'état standard et stables à la température considérée T.

Comme nous l'avons dit, la biomasse est un mélange de polymères, d'organiques volatiles et de minéraux. Cependant, en considérant une formule brute moyenne CJH_O_, il est possible de définir une enthalpie standard de formation de la biomasse et de la calculer à partir de son PCI. La figure E1 représente l'échelle des enthalpies standard de formation de composés carbonés, de l'ammoniaque, de l'hydrogène et de l'eau, exprimées en kJ/mol pour des composés ramenés à un atome de carbone, dans leur formule brute (pour la biomasse, par exemple, $CH_{1.5}O_{0.66}$). Dégager ou consommer de l'énergie lors d'une transformation impliquant ces composés revient à monter ou descendre cette échelle. Produire un vecteur énergétique concentré en énergie nécessite de remonter l'échelle. Une combustion revient à descendre l'échelle, en transformant une énergie potentielle (pouvoir calorifique) sous une autre forme (thermique, mécanique, électrique...). La combustion produit des déchets sous forme oxydée : $\mathrm{CO_2}$ et $\mathrm{H_2O}$, qui ne peuvent pas fournir une énergie utilisable.


Pour produire de l'hydrogène, par exemple, plus l'enthalpie standard de formation est faible, plus l'énergie nécessaire à la production est importante. Inversement, plus le composé à bruler est haut dans l'échelle (maximum zéro pour l'hydrogène), plus la combustion est exothermique. Les ressources naturelles fossiles, ainsi que les vecteurs de type essence ou kérosène, sont positionnées en haut de l'échelle, car naturellement concentrées en énergie. La biomasse, moins dense en énergie car partiellement oxydée, est la ressource carbonée la plus basse dans l'échelle, mais elle est également la seule ressource carbonée renouvelable contenant de l'énergie (le CO, est une source de carbone recyclable, sans contenu énergétique). La fossilisation de biomasses en pétrole, gaz et charbon, a eu pour effet de transformer des ressources peu denses en ressources plus denses, essentiellement grâce à la perte de l'oxygène.

L'échelle de la figure E1 montre l'ordre de grandeur de la quantité d'énergie à fournir pour produire un vecteur énergétique dense à partir d'une ressource peu dense, voire dépourvue d'énergie. Ainsi, produire du kérosène à partir de la biomasse est trois à cinq fois plus énergivore que de le produire à partir du pétrole ou du CH₄. De même, produire un hydrocarbure à partir de la biomasse nécessite moins d'énergie qu'à partir de H₂O et CO₂, qui sont les « déchets énergétiques » totalement oxydés de la réaction de combustion et ne contiennent pas d'énergie.

[i] D. Laguerre, « Mesure du pouvoir calorifique des gaz », Techniques de l'Ingénieur, r2980, p. 17, Éditions T.I., Paris (2005). doi:10.51257/a-v2-r2980

.

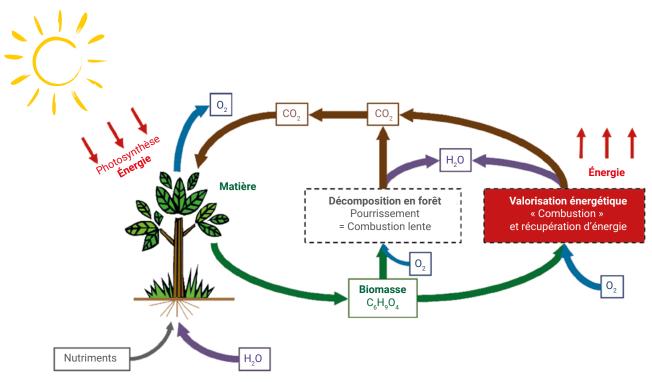
1. Diagramme de Van Krevelen des solides, liquides et gaz hydrocarbonés, et PCI massique et volumique. En abscisse : rapport molaire O/C, et en ordonnée : rapport molaire H/C du composé organique. L'évolution du PCI en fonction des rapports H/C et O/C est figurée en vert pour le PCI massique, et en violet pour le PCI volumique.

>>>

pourra quant à elle, être valorisée par des procédés à haute température. Elle est plus rarement soumise aux contraintes de compétitions.

Transport et stockage des ressources et vecteurs énergétiques : avantages de la biomasse et influence des pouvoirs calorifiques massique et volumique

La grande majorité des sources d'énergies renouvelables sont des énergies de flux, donc non stockables naturellement de manière pérenne. Elles servent généralement à la production de chaleur et d'électricité, vecteurs également difficiles à stocker. Aussi, ces usages nécessitent le développement de moyens poussés et souvent couteux de stockage et de régulation des systèmes.


Grâce à son état de matériau et à sa composition chimique, la biomasse est la seule source de carbone renouvelable et la seule ressource d'énergie renouvelable de stock. Outre ses applications agroalimentaire et matériaux, ses applications énergétiques sont variées, du vecteur chaleur aux combustibles, qui sont techniquement faciles et peu couteux à stocker. Ceci permet d'absorber les régimes transitoires par un simple ajustement des niveaux de réservoirs, peu technologique et peu couteux, ce qui présente un avantage majeur par rapport aux énergies de flux.

La capacité du carbone à se lier à quatre atomes et en particulier à l'hydrogène permet de constituer des molécules organiques à forte densité de contenu d'énergie. Cette densité d'énergie est recherchée en masse, mais aussi en volume. Or les combustibles ont différentes densités d'énergie, notamment volumique, selon qu'ils sont solides, liquides ou gazeux. Ceci a un impact technique et économique sur la chaine de transport et de stockage.

Le diagramme de Van Krevelen représenté sur la figure 1 permet de positionner l'ensemble des molécules et composés organiques dans un espace délimité en abscisse par la valeur maximale 2 du rapport O/C, et en ordonnée par la valeur maximale 4 du rapport H/C. Il présente également l'intérêt de pouvoir contenir les composés organiques solides, liquides et gazeux dans les conditions normales. Sur ce diagramme sont placés, en gris, les composés solides, de la biomasse et ses charbons à l'anthracite, ce qui permet de visualiser l'évolution de leurs rapports O/C et H/C.

Les biomasses sont riches en oxygène et en hydrogène. Ces deux atomes sont perdus lors de la fossilisation des biomasses pour produire des charbons. La faible proportion d'oxygène dans les charbons explique que leur PCI massique soit plus élevé que celui des biomasses. La faible proportion d'hydrogène a un impact

>>

2. Cycle du carbone de la biomasse, hors alimentation et construction.

>>>

négatif sur le PCI. Dans la catégorie des liquides, les composés contenant de l'oxygène, tels les alcools ou l'éther, sont pénalisés énergétiquement, du fait de leur contenu élevé en oxygène. Enfin, les hydrocarbures liquides ou gazeux sont les composés organiques les plus denses en énergie puisque exempts d'oxygène. Le rapport H/C des alcanes liquides tend vers 2 quand les chaines s'allongent (H/C du pentane : 2,4), celui des gaz évolue entre 2,5 et 4. Leur PCI massique augmente avec la valeur du rapport H/C. L'hydrogène, exempt de carbone, possède quant à lui le PCI massique le plus élevé. Enfin, le gaz carbonique et l'eau ne contiennent pas d'énergie. En référence à la masse, l'intérêt est donc d'utiliser des vecteurs ayant le rapport H/C le plus élevé.

Contrairement au PCI massique, qui est toujours croissant en progressant vers l'hydrogène, le PCI volumique atteint un maximum pour les hydrocarbures liquides, aux alentours de H/C = 2. Contrairement aux gaz, les liquides et les solides nécessitent peu de moyens technologiques et peu d'énergie pour leur transport et leur stockage. Les liquides, en particulier, présentent un avantage physique sur les solides et les gaz en matière de stockage, pompage, injection, et fonctionnement en pression. Cela présente un gain énergétique

significatif sur l'ensemble de la chaine et *in fine* un gain économique.

Fermeture du cycle du carbone : l'usage de biomasse est-il neutre pour l'effet de serre ?

Les activités humaines conduisent à larguer dans l'atmosphère, en quelques dizaines d'années, le carbone accumulé au cours de millions d'années dans les « ressources » fossiles. L'accumulation du CO₂ dans l'atmosphère est d'environ 94 millions de tonnes/jour, soit en moyenne 4,5 tonnes par habitant de la planète et par an, qui est aussi la moyenne française, alors que la moyenne européenne est d'environ 6,5.

La question de la neutralité des usages de la biomasse vis-à-vis de l'effet de serre est, quant à elle, souvent posée sans être véritablement tranchée. Du point de vue des usages, il s'agit simplement d'établir théoriquement un bilan entrée/sortie ayant un terme d'accumulation nul. Dans la pratique, parvenir à cet équilibre est délicat car celui-ci est complexe et concerne tous les écosystèmes : sols, biomasse aérienne (forêts, cultures), milieux aquatiques. Son analyse repose sur l'étude des mécanismes physico-chimiques de la croissance des plantes, de la vie des sols et des milieux aquatiques. Les études consacrées au changement d'affectation des sols directs ou indirects et à ses conséquences sur le stock de carbone, intègrent ces questions [1]. Ces aspects sont régulés au niveau européen par la "Renewable Energy Directive — Recast to 2030 (RED II)". Il s'agit de plus, de ne pas nuire aux écosystèmes, qui intègrent toutes les espèces vivantes, végétales et animales.

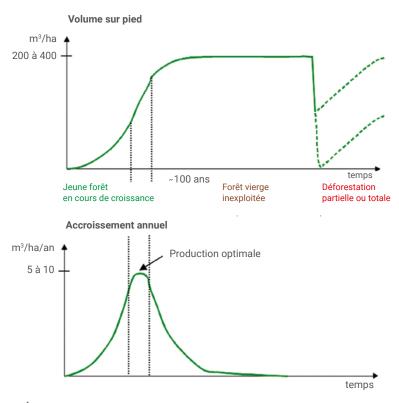
En terme de bilan de CO_{2'} en se limitant à n'exploiter que la biomasse ayant poussé pendant l'année, les flux s'équilibrent et un régime permanent s'établit (fig. 2). Alors, le stock de carbone et d'énergie sous forme de biomasse reste à peu près constant. Les écosystèmes sont donc à la fois des stocks de carbone et des milieux participant à la régulation des flux.

Comme le montre la figure 3, une jeune forêt entretenue a une croissance plus forte qu'une forêt ancienne non entretenue qui, elle, atteint un équilibre : il meurt autant d'arbres qu'il en nait. C'est le cas des forêts primaires qui constituent un stock important de carbone, mais n'en accumulent presque plus et qui, en cas de déforestation, deviennent émettrices de CO₂. Une forêt stocke d'autant plus de carbone annuellement qu'elle est entretenue ou exploitée, en sortant le bois mort, pour laisser la place à des arbres jeunes pour se développer. Une forêt entretenue^(b) continue à se développer

• • • • • • •

et fournit annuellement une quantité de biomasse supérieure à sa production en phase de stagnation. Cet accroissement, à la fois du flux et du stock, est relié au bilan d'absorption du carbone provenant de l'atmosphère.

Cette biomasse peut être laissée en forêt, où elle finira par pourrir et se retransformer en CO₂ et H₂O, ou bien être extraite et valorisée pour les activités humaines (construction, chimie, énergie). Mais les pratiques liées à l'usage des biomasses ne doivent pas déstocker le carbone contenu dans ces réservoirs aériens et souterrains, au risque d'aggraver l'effet de serre.


Si les hommes sont peu nombreux, ils ne retireront qu'une portion infime de la biomasse d'une forêt, sans impact sur son équilibre. Si le prélèvement devient massif, il y a risque de déséquilibre. À grande échelle, il faut inventer un mode de gestion respectant l'équilibre des forêts pour éviter un non-sens environnemental en matière de CO. et pour d'autres raisons (biodiversité, équilibre des sols...). La France s'est ainsi dotée en 2015 d'une Stratégie nationale de mobilisation de la biomasse au sein de la loi de transition énergétique pour la croissance verte [2].

Énergies renouvelables, gisements de biomasses et complémentarités

Usages actuels en France

En 2019, la consommation finale d'énergie renouvelable était de 26,5 Mtep/an, soit 308 TWh/an^(c) et 17 % de la consommation finale. La biomasse est la ressource renouvelable majoritaire à 54 % (bois pour l'énergie 39 %, biocarburants 12 %, biogaz 2 %). Le bois pour l'énergie est principalement affecté à la chaleur, dont 2/3 vers le bois des ménages et 5 % vers la production d'électricité (voir l'image p. 51). Le biogaz est utilisé à part égale entre électricité et chaleur.

Les autres ressources renouvelables sont majoritairement affectées à la production d'électricité (hydraulique 20 %, éolien 10 %, solaire photovoltaïque 4 %). La production de

3. Évolution et différentes étapes de la vie d'une forêt inexploitée.

chaleur non issue de la biomasse provient des pompes à chaleur et de la géothermie (10 %).

La consommation totale de biocarburants liquides est de 3,2 Mtep/an, stable ces dernières années. En terme de PCI, elle représente 9 % de la consommation dans les transports, répondant aux objectifs européens 2020 de 10 %. L'éthanol, incorporable à l'essence, est produit en France principalement à partir de betteraves sucrières ; sa consommation est de 0,7 Mtep/an [3]. Les EMAG et les HVO(d) sont les deux principaux biocarburants incorporés au gazole routier. Ils sont produits à partir de biomasses contenant des acides gras comme les cultures oléagineuses (colza, palme, soja, etc.), les huiles usagées ou les graisses animales. Leur consommation est d'environ 2,5 Mtep/an.

Le gisement de ressources en biomasse ne pourra pas répondre à tous les besoins en chaleur, électricité et carburants, car il est limité. Il faut donc s'interroger sur les meilleurs usages de ces ressources.

L'analyse physique et systémique montre que bruler massivement la biomasse pour produire de la chaleur n'est pas une solution optimale (il est préférable d'isoler les bâtiments), et qu'il

faudrait la réserver aux cas marginaux de cogénération électricité-chaleur lorsqu'il n'y pas de solution de rechange (sites isolés montagneux, par exemple). Les productions de chaleur et d'électricité disposent par ailleurs d'autres solutions technologiques, et la combustion ne permet pas de valoriser le carbone pour des usages matière ou vecteur d'énergie. Concernant la mobilité, il est possible de faire certains kilomètres avec des solutions d'électrification (batteries pour trajets moyens en véhicules légers, hydrogène). L'usage des carburants liquides de type kérosène reste incontournable dans le cas de l'aviation par gros porteurs et à longue distance, en raison de leur densité d'énergie volumique. qu'aucun autre vecteur énergétique n'atteint (en particulier l'hydrogène et les batteries). Les carburants liquides restent également très avantageux pour le transport terrestre à longue distance et le transport maritime.

Peut-on accéder à une offre supplémentaire ?

Pour répondre à cette question, il faut établir un état des lieux des gisements potentiels de ressources en biomasses à des fins énergétiques. Cet exercice est fastidieux et incertain. En effet, les évaluations réalisées sont dispersées et d'une méthodologie délicate à mettre en œuvre. Il existe un nombre croissant d'études qui, selon les hypothèses retenues, aboutissent encore aujourd'hui à des estimations dispersées, comme le montrent les travaux de l'Imperial College of London et Concawe, de Kearney, du WWF et de Solagro, pour ne citer que les plus récents.

Cette évaluation évoluera à l'avenir, notamment grâce à des travaux menés en France par l'Alliance nationale de coordination de la recherche pour l'énergie (ANCRE) et la Programmation pluriannuelle de l'énergie, ou en Europe par le Centre commun de recherches (JRC).

Pour établir les valeurs ci-après, les contraintes suivantes ont été considérées:

- pas de concurrence avec l'alimentaire : les biomasses considérées n'entrent pas en concurrence d'usage des sols ou d'usage final avec celles de l'industrie agroalimentaire :
- pas de concurrence avec la biomasse actuellement exploitée : ce travail n'étant pas prospectif, il n'est pas nécessaire de discuter d'éventuelles réorientations de filières;
- ne pas toucher au stock: n'exploiter que la pousse annuelle, accroitre la durabilité et réduire l'impact sur l'effet de serre.

L'estimation montre un potentiel supplémentaire de 200 à 300 Mtep/an en Europe, pour 140 Mtep/an aujour-d'hui, dans lequel les ressources agricoles et forestières contribueraient chacune environ pour moitié. Pour la France, le potentiel supplémentaire serait de 10 à 30 Mtep/an, pour 14 Mtep aujourd'hui. La différence entre minimum et maximum repose sur les hypothèses de contribution de la forêt et de gisement potentiel des cultures énergétiques.

La part des déchets (hors forêt) ne représente qu'environ 10 % du gisement de biomasse. Cette estimation vient renforcer une analyse [4] selon laquelle « un pays ou une région ne peut pas baser son économie et sa politique énergétique sur les déchets, car leur part est trop faible en énergie et en matière. »

Avec ces gisements supplémentaires, la biomasse pourrait se substituer à 20 % de la consommation totale d'énergie finale, contre 8,5 % aujourd'hui, à 30 % de l'énergie d'origine carbonée fossile et à 70 % de l'énergie consommée dans le secteur des transports. La situation est donc contrastée : la biomasse est la ressource ayant l'usage actuel et le potentiel le plus élevé, et la seule ressource renouvelable d'énergie carbonée. Cependant, son gisement potentiel n'est pas suffisant pour réaliser une substitution à 100 % des énergies carbonées fossiles, ni même des carburants. On arrive donc au constat suivant : « indispensable mais insuffisant ».

La production d'électricité et de chaleur résidentielle à basse température est actuellement la part la plus importante des usages de biomasses. Ces productions peuvent reposer sur d'autres moyens de substitution, comme l'éolien ou le solaire. Pour tenir compte de la rareté future de la biomasse, il conviendrait de réduire son usage en production d'électricité et de chaleur, et de la réserver à des applications pour lesquelles l'usage du carbone n'est pas substituable, comme la chimie ou les combustibles, notamment les carburants pour les transports.

Les usages du carbone en lien avec l'électricité. Biomasses ou CO₂ comme sources de carbone renouvelables ou recyclées, combinées avec l'hydrogène

La rareté du carbone issu de la biomasse renouvelable pousse à maximiser sa conversion en vecteur à haute densité énergétique et à plus haute valeur ajoutée. Le recyclage du CO₂ est également une solution pour soutenir le besoin en carbone d'origine non fossile. Or, la biomasse a un rapport H/C de 1,5, alors que les liquides à haute densité d'énergie (diesel, kérosène) ont un H/C de 2 et le méthane un H/C égal à 4.

Dans le cas des usages de la biomasse, aboutir à H/C = 2 implique nécessairement une perte en rendement carbone, à moins d'injecter de l'hydrogène. L'usage du CO₂ impose quant à lui l'injection de 100 % de l'hydrogène nécessaire.

La combinaison biomasse-électricité a été étudiée au CEA depuis 2005 [5]. De son côté, le gestionnaire du réseau de transport d'électricité RTE intègre les interactions entre l'électricité et d'autres vecteurs, en y incluant les usages des biomasses. Il a été démontré par des analyses multicritères que. lors de la production de combustibles de synthèse (diesel, kérosène, méthane, méthanol), l'injection d'hydrogène permet jusqu'à un doublement du rendement carbone biomasse vers combustible [6]. Pour une unité de production de carburant de 200 $MW_{pcl'}$ une technologie standard produit environ 0,5 MWh_{Carb}/MWh_{Bio} à un cout estimé de 1,0 à 1,4 €/l. Pour les technologies utilisant l'injection d'hydrogène électrolytique, la conversion augmente jusqu'à 0,8 MWh_{Carb}/MWh_{Bio} avec des couts de production d'environ 1,8 €/l. La capacité de stockage de l'électricité, dans ce cas, est de 0,5 MW $h_{elec}/MWh_{Carb'}$ ce qui correspond à un besoin net en électricité d'environ 0,4 MW h_{elec} /MW $h_{PCI-Bio}$. Il y a donc un fort intérêt à injecter de l'hydrogène pour maximiser le rendement carbone.

Ainsi, une étude réalisée en 2019 a montré que la biomasse européenne pourrait potentiellement couvrir les besoins des transports aériens, maritimes et d'une partie du transport terrestre, sous condition d'électrification majoritaire du transport terrestre (50 à 70 % des kilomètres) et en maximisant la conversion du carbone renouvelable en combustibles à haut PCI [7].

Bien entendu, le CO₂ peut lui aussi être utilisé comme matière première. À quantité de produit combustible égal, l'énergie à injecter sous forme d'hydrogène est deux fois celle du cas biomasse le plus consommateur. En effet, l'énergie électrique nécessaire à la production d'hydrogène pour recycler massivement du CO₂ en carburants liquides est de l'ordre de 1,4 MWh_{elec}/MWh_{PCI-Combustible}.

Pour fixer les ordres de grandeur, on peut projeter que convertir la quantité de CO₂ concentré, provenant d'émissions industrielles théoriquement récupérables en un an (140 MtCO₂ en 2020 et 25 MtCO₂ à l'horizon 2050^(e)), nécessiterait des débits d'hydrogène de 19 Mt/an et 3,4 Mt/an respectivement. Pour rappel,

.

les projections de production d'hydrogène faites par RTE à l'horizon 2035 sont de 0,63 Mt/an, ce qui est inférieur par un facteur 5 à 30. La production d'hydrocarbures serait équivalente à la consommation totale de carburants en 2019, à partir de 140 MtCO₂/an, ou à celle des carburants pour l'aviation à partir de 25 MtCO₂/an.

Les évaluations basées sur une consommation électrique de 45 MWh/t H₃ et sur un rendement énergétique de 100 % de conversion H₂/CO₂ vers les produits (cas théorique favorable), aboutissent à un besoin électrique compris entre 1100 TWh/an en 2020 et 200 TWh/an en 2050. En se référant à la production électrique de 335 TWh/an en 2020, le besoin en électricité reviendrait, respectivement en 2020 et en 2050, à multiplier le parc nucléaire par 3,4 ou 1,5. En se référant aux productions d'électricité renouvelables en 2019^(f), cela reviendrait à multiplier la production éolienne d'un facteur 35 à 5 ou la production photovoltaïque d'un facteur 100 à 15, uniquement pour convertir le CO, et produire des hydrocarbures.

L'analyse des gisements potentiels et des bilans d'énergie montrent la nécessité d'associer la biomasse et le CO₂ comme matières premières, afin de remplacer durablement du carbone fossile par du carbone renouvelable ou recyclé. Ceci montre également que cette substitution aura un impact sur la production massive d'électricité.

(a) La norme de l'Agence internationale de l'énergie définit le contenu énergétique de la tep — tonne équivalent pétrole — à : 1 tep = 41,868 GJ, 1 Mtep = 11,630 TWh. Une tranche de centrale de 900 MW produit 0,7 Mtep/an.

- (b) La notion de bon entretien est assez dangereuse. Il s'agit ici de bon entretien au sens de respect d'un équilibre, d'une diversité et d'un écosystème, pas au sens d'une exploitation industrielle intensive non respectueuse de l'environnement.
- (c) Les chiffres pour 2020 et 2021 sont affectés par la crise sanitaire.
- (d) Les esters méthyliques d'acides gras (EMAG ou FAME en anglais) sont issus d'huiles végétales (EMHV). Les huiles végétales hydrogénées (HVO) s'apparentent à un gazole de synthèse. La ressource d'origine est la même, mais les EMAG proviennent d'une estérification alors que les HVO sont produites par hydrogénation.
- (e) Selon les projections de la Stratégie Nationale Bas-Carbone révisée en juillet 2022 (https://cutt.ly/snbc).
- (f) Production électrique éolienne : 32,3 TWh/an en 2019, soit 2,8 Mtep/an. Production électrique photovoltaïque : 11,4 TWh/an en 2019, soit 1 Mtep/an.

Conclusion

Cette synthèse démontre le fort impact des contraintes de la thermodynamique sur nos systèmes énergétiques. Ces contraintes sont de nature physique plus que technologique, et il n'y a pas de solution unique idéale à la défossilisation carbonée. Dans un système tenant compte des contraintes physiques et thermodynamiques, émergeront probablement des solutions combinant sobriété (réduction de la consommation) et efficacité énergétique (réduction de la consommation pour un même service rendu).

Par nature, la biomasse est la seule énergie renouvelable de stock contenant du carbone. Bien que son PCI soit plus faible que celui des combustibles fossiles, elle contribue au mix énergétique, et pourrait voir sa part s'accroitre significativement si son exploitation est organisée raisonnablement.

Les ressources et vecteurs carbonés restent souvent les plus avantageux, compte tenu de leur densité, de leur contenu énergétique et de leurs propriétés adaptées aux infrastructures existantes (transport et stockage). Devant un gisement énergie/carbone renouvelable en quantité limitée, il est nécessaire de promouvoir les meilleures pratiques et les meilleures utilisations de la biomasse, en privilégiant celles où la substitution par d'autres sources renouvelables ou

décarbonées n'est pas possible. Ceci revient à pousser des procédés de transformation maximisant la conversion du carbone en vecteur carboné concentré. Ainsi, il faut éviter de le bruler pour aboutir *in fine* à de la chaleur et à du CO₂, alors que des modes alternatifs de production existent.

La nature n'ayant pas fait mieux que les hydrocarbures en matière de densité énergétique (hors nucléaire), le carbone est un bon moyen de stockage de l'hydrogène. Ceci conduit à considérer l'hydrogène électrolytique décarboné et les sources de carbone comme des intermédiaires vers des produits chimiques et des vecteurs combustibles carbonés. Sur l'ensemble de la chaine (extraction, transformation, stockage et transport), les vecteurs liquides sont très avantageux du point de vue physique, mais également du point de vue technologique (moteurs) ou des infrastructures (stockage et transport).

Les biocarburants de deuxième génération possèdent le meilleur potentiel, en particulier vers l'aviation, et potentiellement vers les applications maritimes et terrestres. Ils présentent des avantages en matière d'émission de $\mathrm{CO_2}$ et de réduction des émissions locales. Pour des raisons de ressources en carbone, le recours au carbone recyclé provenant du $\mathrm{CO_2}$ doit être envisagé, avec les contraintes liées à sa capture en grande quantité et à la production massive d'électricité. \blacksquare

- 1. https://cutt.ly/europa-commission-presscorner
- 2. https://fr.wikipedia.org/wiki/Stratégie_nationale_de_mobilisation_de_la_biomasse
- 3. https://cutt.ly/ifp-biocarburants-2020
- 4• Déclaration de Kjel Anderson (Svebio Bioressources Suède), lors du workshop "Where will we get our biojet ?" de la conférence Biomasse EUBCE de Lisbonne en 2019.
- 5• J. M. Seiler et al., "Sc-BtL routes for massive biofuel production", presenté au 8th World Congress of Chemical Engineering: Incorporating the 59th Canadian Chemical Engineering Conference and the 24th Interamerican Congress of Chemical Engineering (2009).
- 6• E. Peduzzi et al., "Thermo-economic analysis and multi-objective optimisation of lignocellulosic biomass conversion to Fischer-Tropsch fuels", Sustain. Energy Fuels, 2 (2018) 1069–1084. doi: 10.1039/C7SE00468K.
- 7• G. Boissonnet, "Coupling electricity and biomass to biofuels increases performances in mobility. An overview in Europe (1BP.1)", 27th European Biomass Conference & Exhibition EUBCE, Lisbonne (mai 2019).